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Intersubband optical transition matrix elements for hole 
states in semiconductor quantum wells 

Z IkoniC, V MilanoviC and M TadiC 
Faculty of Electlical Engineering, Univenitj of Belgrade, Bulevar Revolucije 73, 11000 
Belgrade, Yugoslavia 

Received 13 April 1995, in final form 23 June 1995 

Abstract. Intersubband optical transition matrix elemens between quantized hole states in 
semicunductor quantum wells, calculated from the 4 x 4 Hamiltonian, are derived, taking into 
account the position dependence of Luuinger y parameters. Furthegore. the transition matrix 
elemens betwen slates obtained within the axial approximation, from the 2 x 2 Hamiltonian, are 
also derived. Numerical calculations indicate the impomnce of taking the position dependence 
of Luttinger p m e t e r s  into account for bound-free fransitions. 

1. Introduction 

Intersubband transitions in semiconductor quantum well (QW) structures have attracted 
considerable research attention, related to the possibility of making infrared photodetectors 
and similar devices. While the normally polarized, in-plane incident radiation can always 
induce these transitions, the technically more favourable case of normally incident, hence 
in-plane-polarized, radiation is different. In n-type QWs such transitions are allowed only 
between states arising from ‘tilted‘ indirect valleys, e.g. [l]. In p-type QWs, however, 
the normally incident radiation can also induce transitions, regardless of the fact that the 
valence band top is at the Brillouin zone centre, e.g. 12, 31. This is sometimes ascribed 
to p-like character of hole wavefunctions, in contrast to the s-like character of electronic 
wavefunctions, but in fact it stems from the contribution of bands other than those included 
in the zero-order ‘envelope times Bloch’ description of the wavefunctions (this actually 
applies for any polarization of the incident radiation). In the case of interband transitions 
it turns out that these first-order corrections may be safely ignored when calculating optical 
transition matrix elements. For intersubband transitions, however, they usually happen to 
be very important, giving the main part of the matrix elements. When dealing with electron 
states, for instance, discarding the wavefunctions’ ‘fine structure’ would result in values of 
A . p  matrix elements lower by a factor of m* (electron effective mass in free electron mass 
units) than their real values. Similarly, assuming that hole wavefunctions include only the 
envelopes multiplying Bloch states, the latter written in terms of (IX), IT), IZ)), (It), I J.)) 
states, would clearly result in zero values of matrix elements for the in-plane polarized 
light, while they are really finite. The objective is then to find the light-matter interaction 
operator that would act on the envelope wavefunctions only, instead of applying the A . p 
operator to the full detailed wavefunctions. 

Intersubband transition matrix elements between hole quantized states, as calculated 
fiom the 4 x 4 Hamiltonian, have been derived in [4.5] taking into account the higher-order 
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corrections to the wavefunctions. The split-off band was here ignored, which is justified 
for GaAsfAIAs-based structures in the energy range of interest, Am - 0.1 eV. The position 
dependence of Luttinger y parameters @ecause they vary with the material composition), 
however, was not taken into account. In this paper we shall first describe an alternative, more 
simple way than that used in [4, 51 to find matrix elements for the intersubband transitions, 
allowing for y parameters to be position dependent as well. The method relies on the 
fact that the wavefunctions' 'fine structure' is already contained, via the corresponding sum 
rules, in the 'effective' Hamiltonian itself (the term 'effective' denotes the conventional 
Hamiltonian that acts on the envelope functions only). We then derive the expressions for 
matrix elements that use the wavefunctions found within the block-diagonalized form of the 
Hamiltonian in conjunction with the axial approximation. 

2. Hole states calculated from the 4 x 4 Hamiltonian 

The Hamiltonian matrix describing heavy and light holes in a bulk semiconductor (hence 
with constant values of Luttinger y parameters) is given in 161, and its operator form to be 
used for hole state quantization is obtained by substituting the corresponding momentum 
components with momentum operators. In case of QWs, therefore, Ak, + j ,  (however, 
in the text below, the hat symbol over the operator is omitted). To include the position 
dependence of y parameters we first make a Hermitian generalization of the conventional 
bulk Hamiltonian [6]. This is done in analogy to the case of electrons, where the 
kinetic energy part pz/m* -+ p ( l / m * ) p  to remain Hermitian if m' = m*(z). Thus, 
in the conventional form, given in [6], we substitute yip: + p z n p r  (i = 1,Z) and 
2 n ~ ~ ~ ~ . ~  -+ + P , M )  to get 

2moH = P ( Y I  + ~ Y * ) P ~ - Z ( Y * P : J : + Y ~ P ~ ~ J ~ ~ + P ~ M P ~ J : )  
- 2 [ 2 Y 3 ~ x ~ y  Jxy + ( ~ 3 ~ z  + P~v~)(P= Jxz + py Jyz)l (1) 

where Jij = ( J i 4  + J j J i ) / 2 ,  Jz,y,z are the spin-; matrices, I4 the 4 x 4 unity matrix, energy 
is measured from the valence band top downwards, and the momentum components P ~ . ~ , ,  
are used instead of the wavevector components kx,Y.2 for convenience. The z-axis is chosen 
as perpendicular to the QW plane, so in studying the hole state quantization in QWs p ,  is 
the operator -% d/dz, and px.y = AkZ,, are hole momentum components in the QW plane. 
The detailed form of the Hamiltonian depends on the 'phase convention' for Jx,y matrices, 
and also on basis state ordering. Some references, e.g. [7], use the real J,., imaginary Jx, 
and others, e.g. [8], the real Jz, imaginary Jy convention. Certainly, either choice leads 
to the same results for physical quantities. In thii paper we use the latter choice, and 
order the basis states l j , m j )  as 15, 4). I;, -;), 1;. $), and I;, -;), just as in [SI. Their 
amplitudes, the envelope function components, are denoted as f,, fi, f3, f4, respectively. 
The Hamiltonian, for the case of [001]-grown QWs, is then given by 

P + Q + U  R -S 0 

H = [  -st Rt  0 P-Q+U 0 R '  S ] (2) 
P - Q + U  

0 s i  R t  P + Q + U  
where the z-dependent potential U = U ( z )  has been added to the diagonal elements, and 
[81 
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The Hamiltonian of this form, although not explicitly stated, has in fact been implicitly 
assumed in deriving the boundary conditions for the wavefunction components at the 
interface between two different semiconductors, e.g. 171, where the y parameters change 
abruptly. It is also important to note that these boundary conditions, obtained in the 
conventional manner, i.e. by integration of the Hamiltonian in the vicinity of the interface, 
coincide with those obtained from the requirement for current continuity (the expressions 
for hole current density are given in [9]). 

In  the^ presence of an electromagnetic field, described by a magnetic vector potential 
A(?, f )  the Hamiltonian (2) changes so that px.y.z + px.y.i - eA,.y.r. While this has been 
commonly used in the case of a static magnetic field, it is equally tme when dealing with 
the electromagnetic field of a light wave. Now, denoting by HA the Hamiltonian in the 
presence of the perturbation A(?-, t ) ,  the interaction (i.e. perturbation) Hamiltonian Hint is 
clearly equal to the difference of HA and the unperturbed Hamiltonian (2). Thus, after 
very simple algebra, and neglecting terms proportional to AjAj, i ,  j = x, y .  z, as well as 
derivatives of Ax,y,i, we find 

Mfj = Vft . Hin! . (12) 

where the subscripts i and f denote the initial and final hole states, and the integration 
over z is implicitly assumed. In calculating absorption, this matrix element squared is to 
be integrated over px  and p y ,  and summation over the initial and final quantized states 
performed, subject to the energy and momentum conservation rules. 

If the Luttinger y parameters are assumed to be z independent, this result coincides 
with that of [4], obtained in a different way, as discussed above. In addition, we may note 
that the interaction Hamiltonian can also be written as (or found from) 

(13) 
ie 
R Hint = eu . A  = - [ H ,  T I .  A 
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where 2) denotes the velocity operator [lo, 111, also a 4 x 4 matrix, elements of which are 
themselves vectors, and [. . . , . . .I is the commutator. Generally, this form of the interaction 
operator is quite important, not only for the case of holes, because it applies if the potential 
in the Schrodinger equation is either local or nonlocal, while the conventional A . p form 
fails for nonlocal potentials 1121. Finally, we may note that the described method of finding 
the interaction Hamiltonian is also applicable for intersubband transitions between electronic 
quantized states [13]. 

3. Hole states calculated from the block diagonal Hamiltonian and the axial 
approximation 

It is well known that the Hamiltonian (2) can be block diagonalized into two uncoupled 
2 x 2 blocks by introducing the unitary transform matrix [8] 

where 'p and are chosen so that U H U t  is block diagonal. Although there is no relation 
between the two, the block diagonalization is commonly used together with the axial 
approximation, which amounts to neglecting the difference between fi and fi in the off- 
diagonal terms of (2). However, since 'p and q take fixed values (p = 3r /4  - 38/2, q = 
-x/4+9/2,8 = tan-'(p,/p,)), independent of the y parameters if the axial approximation 
is employed, e.g. [14], it is used throughout this section. The advantage of this approach is 
that the initial 4 x 4 problem splits into two uncoupled 2 x 2 problems, i.e. 

and 

with 

(17) 
2 / ? _  
2mo 

li: = IN - iIsI = -IYP: - ipr(?pz + PAI 

where p: = p: + p :  is h e  in-QW-plane hole momentum and 7 the arithmetic average of yz 
and fi used in the off-diagonal elements of (2). If the potential U ( z )  of the QW structure 
is symmetric then the upper Hu and the lower HL block of the Hamiltonian give identical, 
i.e. degenerate eigenenergies (Kramers degeneracy), but if U ( z )  # U(-z)  the degeneracy 
is lifted, e.g. [91. The axial approximation works very well in the caSe of [001]- (and also 
[llll-) grown QWs, e.g. [141, and should be a m t i v e  for use in calculation of QWs optical 
properties. 

To evaluate the transition matrix elements, and eventually absorption, if the 
wavefunctions [ F I ,  F2IT and possibly [F3, F4IT have been found from the block-diagonal 
form of the Hamiltonian (U), (16), one can in principle back-transform the F-envelopes of 
(15, 16) to the f-envelopes (amplitudes of I j ,  mi) states) by the unitary transform matrix 
U (14), i.e. make 

(18) Vu = ut IF1, Fz, 0, 0IT 
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and 
v, = ut .  CO, 0,  F3, F41' (19) 

and then proceed as describcd in section 2 (this means, inter alia, integration over px  
and p ,  in-plane momentum components). The question, however, arises on whether it 
is possible to give an appropriate 2 x 2 interaction Hamiltonian, in analogy to the one 
given by equation (7), that would directly use the envelope functions calculated withii the 
block-diagonal representation, in order to find the transition matrix elements. This would 
in turn require a single integration over pt in calculating the absorption. Furthermore, 
if the potential U(z )  is symmetric and degenerate pairs of states occur, is it enough to 
actually evaluate and use only [PI, Fz], but not IF3. Fa], envelope functions? The same 
global structure of the basic (2)  and the interaction (7) Hamiltonians suggests that this 
could be done. However, the structure of elements of the two mabices is quite different, 
and it may easily be checked that the unitary transform (14) does not block diagonalize 
the interaction Hamiltonian, except when the polarization of the light wave is perpendicular 
(i.e. if only A, is nonzero). Furthermore, there is no unitary transform that would block 
diagonalize the basic and the interaction Hamiltonians simultaneously, and hence there is 
no 2 x 2 interaction Hamiltonian that would act only on eigenstates of the upper, or only 
of the lower, Hamiltonian block. Stated differently, although the eigenstates of HU and 
HL are fully independent in the unperturbed QW (and thus 'upper' and 'lower' holes exist, 
in analogy to spin-up and spin-down electrons), light can induce transitions between the 
upper and lower hole states, provided it has the in-plane component of polarization. The 
transition matrix elements have therefore, at least temporarily, to be evaluated within the 
4 x 4 system, even though the quantized states are found within the 2 x '2 blocks of the 
Hamiltonian. 

To proceed, then, we start from two states [ F i ,  Fl, 0, 01' and [O, 0, F i ,  F:lT as the two 
independent initial states, and the corresponding two final hole states (superscript f), and 
use them, via (18) and (19), in equation (12) to find the four transition matrix elements MUU, 
MLU,  Mu', and MLL, the first subscript denoting the type of the final, the second of the 
initial state. As noted above, in asymmetric QWs these transitions comespond to different 
energies, and in symmetric'QWs all the four would occur at the same energy. These 
matrix elements turn out to depend explicitly on the in-plane hole momentum components 
px  and p,,  not just p t  which would be in the spirit of the axial approximation, and also 
on all the three components of A. However, with p x  + ip, = pl exp(i@), and defining 
Ax + iA, = A,exp(iis), the 'in-plane' terms in matrix elements take the form of eithex 
Alpl sin(A) or Alp, cos(A), where A = 8 -0 is the angle between the in-plane momentum 
of the particular hole state undergoing transition and the in-plane component of the light 
polarization vector. Both the initial and the final state have the same in-plane momentum 
vector, since it is the conserved quantity in the transition. Now, in a QW structure at 
thermal equilibrium, or at least not departing much from it, we may justifiably assume that 
the initial hole states will be uniformly distributed in respect to their in-plane momentum 
orientation, i.e. the angle A, in the range (0, zir). Since it is the modulus of Mij squared 
that is of interest in absorption, it is this quantity that has to be averaged over A. Thus, 
using cos(h) = 0, a = f, and the same for the sine function, we get the expressions 
for the direction-averaged matrix elements squared: 
-- 
M&, = ~+p(y::' + y&) + Ay,, + h y z 1 ~ p 1  - i A ( n l z  - 

+~nl;) + @ - i2Ap,f i12 - ~ ; , ) I ~ A ; L  (20) == :Ins, -n,+i2pt~31-ji4~)l2A: (21) 
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- 
Mi, = $ 1 h 3  - na  - i2p,WI3 --7dl’A; (22) 
-~ M i L  = f[2(y$’ + y&) + &Ti4 + &T4;1pr - i f i ( l I 3 4  - lT43)I2A: 

where e.g. yI(:) = (F/ly(+)lF;), nlz = (F{lnlF$. etc are the ‘partial‘ matrix elements 
of the operators 

p’ = n ( z )  i YdZ) (24) 

(25) 
- YdZ) + Y3(Z) 

IT(*) = (n 2Y2)Pz + P:(n * 2y2) (26) 
n = T P ~  + P ~ T ~  ~~ (27) 

calculated with the corresponding wavefunction components of the upper [FI, Fz] and the 
lower [F3. F4] Hamiltonian block, both for final (f) and initial ( i )  quantized hole states. 
As noted above, in the case of asymmetric QWs there is no h e r s  degeneracy, and the 
four mahix elements calculated at a specified value of pr correspond to different transition 
energies, or, conversely, if required at a specified transition energy they should be calculated 
at appropriate different pr values. In such a case there is no relation between the upper and 
lower block eigenfunctions, and both have to be calculated from (15) and (16). To calculate 
the absorption, finally, the integration over 2zp, dp, has to be done, which is a significant 
saving when compared with the integration over dp, dp, when the axial approximation is 
not employed. 

The final problem that we address is the important case of symmetric QWs, where 
the upper and the lower block produce degenerate energy stam, but the wavefunctions 
are certainly different. All the four matrix elements (20)-(23), calculated at a specified pr 
value, now contribute to the transition rate at the same energy. Furthermore, there is a 
simple relation between the eigenfunctions of the upper and the lower block so that, as we 
show below, it is enough to actually evaluate only F, and Fz envelopes for the purpose of 
the matrix elements and the absorption calculation. 

To find the relation between the IF,, Fz] and [F3, F41 eigenfunctions, we first note that 
sets of equations (15) and (16) are differential equations with real coefficients, and whether 
the solutions (eigenfunctions) will be real or complex depends on the boundary conditions. 
Thus, bound states will have real eigenfunctions, and those of free states, interesting for the 
bound-free transitions, will be complex. Furthermore, the individual f i  do not have definite 
parity even if the potential U(z) is symmetric, due to the mixed-parity l? term. Now we 
Fourier transform (with the kernel exp(iKz)) both sets of equations. The derivative terms 
become dF(z)/dz + iKF(K) and d2F(z)/dzz + -K2F(K), and the product U(z)F(z) 
turns into the convolution U(K’)F(K-K’) dK’. Now, if (and only if) U(z) is symmetric 
its Fourier transform is real, and one can see that the complex conjugate of one set will 
coincide (because U(K) = U*@)) with the other set upon substitution F,(K) --f F,*(K) 
and Fz(K)  + F;(K) at the same energy. Were the potential U(z) asymmetric, U ( K )  
would be complex, the two sets of equations would not be simply related, and indeed the 
degeneracy would be lifted. This is an alternative demonstration that degeneracy appears 
only in symmetric potentials, that does not directly invoke the time reversal operator. In the 
symmetric case, with the Fourier tiansforms of degenerate state eigenfunctions satisfying 
[Fs(K), Fd(K)] = [F;(K), F;(K)], in real space we have 

+rn&)+nZ) (23) 

Y =  

F ~ ( z )  = F;(-z) F~(z) = F;(-z). (28) 
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Using this properly one can show after some algebra that IMu(iI2 = ~ M L L ~ '  and 
IMIJLI~ = - I M I . I J ~ ~ ,  as expected, so only the two of them, say Muu and MUL, should 
be really calculated. Now, while the evaluation of Muu requires the explicit use of Fl(z) 
and Fz(z) only, the expression for MU' may be further transformed in the same fashion, 
making use of equation (28), to get -~ 

~ 

~2 U L  - l n -  - '1 21 -ni~+i2pf(TiZI  -7iz)I2A: (29) 
where the overbar in the subscript means that the particular 'partial' matrix element is to be 
evaluated with unconjugated but transposed (2 --f -z about the origin in the QW centre) 
corresponding wavefunction component for the final state, e.g. = 1 F{(-z)nFi(z) dz. 

Therefore, for symmetric QWs considered within the axial approximation in the block- 
diagonal representation it is enough to find only F, and Fz envelopes to evaluate the effective 
@ansition matrix element squared 

~~ - _ _ -  
IMl& = 2(IMUUIZ+ IMUL12) (30) 

making use of equations (20) and (29). In calculating the absorption it should be integrated 
over 2np, dp,, with only the upper block hole states included; the existence of the lower 
block states is implicitly taken account of in the matrix element itself. 

There is an additional point to note, related to equation (28) and the expressions derived 
by using it. For bound states of the upper and the lower block it is easily checked that 
equation (28) holds true. The case of free states is slightly more complicated, related to the 
degeneracy, within each block, that appears in the continuum. In bulk and superlattices, 
choosing plane waves (in the latter case modulated by superlattice Bloch functions) as the 
independent degenerate solutions for the upper block, equation (28) would work quite well, 
producing the lower block states of the same, i.e. plane-wave-like, type. Generally, however, 
the degenerate solutions, in whatever form they are obtained, may be combined to give the 
wavefunctions of the form required for a paaicular problem. For example, for a quantum 
well one may construct scattering states of the upper, and also of the lower block. Starting 
from the upper-block scattering states, it is obvious that application of equation (28) will 
not deliver any proper scattering states at all, and definitely not those of the lower block 
(assuming that this form of free-state wavefunctions is desired for the lower block, too). 
Nevertheless, it may be shown that [F3, F41 obtained from equation (28) may be expressed 
in terms of the lower-block scattering states (or vice versa) through a unitary transform, 
which is the reason that the expressions derived by using equation (28) are valid for free 
states as well. 

4. Numerical examples and discussion 

The application of the relations derived above to the design of a p-doped quantum well 
infrared detector will he considered in a future publication. Here we present just a few 
sample calculations of transition matrix elements in order to explore the influence of the 
position dependence of Luttinger parameters. For this purpose we have chosen a 4 nm wide 
GaAs well embedded in AI~.~G*..IAS bulk. Values of  Luttinger parameters in GaAs are 
taken as yl = 6.85, y2 = 2.1, y3 = 2.9, and in AlAs as y1 = 3.45, yz = 0.68, y3 = 1.29, 
after [15], and linear interpolation is used for the alloy. The valence band discontinuity at the 
interfaceis U, = 0.15 eV. This quantum well has bound states at -120 meV (hh), -83 meV 
Oh) and -40 meV (hh), measured from the well top at reference zero energy. Relative 
error in the effective transition matrix element squared between the lowest two states, if the 
position dependence of Luttinger parameters is neglected, amounts to 2-lo%, depending on 



7052 Z IkoniC et a1 

the hole in-plane momentum. Thus, it would average wit to a few per cent in absorption, 
making the correction not too important For other transitions the error is somewhat larger, 
but the matrix elements themselves are smaller. In this system, therefore, the position 
dependence of Luttinger parameters, due to its small variation, does not produce any major 
effect on bound-bound transitions. The situation is different for transitions to the continuum 
(bound-free). Errors occurring in evaluation of the matrix element squared from the lowest 
(hh) bound state to continuum states, if the Luttinger parameters are taken as constant, are 
as large as 20-8076, again depending on the in-plane momentum. In the case of bound- 
free transitions, therefore, considering the position dependence of Luttinger parameters is 
essential. Physically, this is quite an expected result: the stronger the confinement to one 
material, the less important is the spatial dependence of y parameters. Although not related 
to this position dependence, it is also interesting to note that the ratio of matrix elements 
for ‘block-conserving’ (m) and ‘block-flip’ transitions (lMu~12) is equal to one for 
zero in-plane momentum, and as it increases this ratio may vary between roughly 0.2 and 
20. This is quite different from the situation with ‘spin-flip’ transitions between electronic 
states. 

- 

5. Conclusion 

The matrix elements for the intersubband optical transitions between the quantized hole 
states in semiconductor quantum wells, calculated from the 4 x 4 Hamiltonian, are derived 
by a method alternative to that of 141, and taking into account the position dependence of 
Luttinger y parameters. Furthermore, the expressions for the transition matrix elements are 
also derived for the case where the hole states are calculated within the axial approximation 
from the 2 x 2 block-diagonalized Hamiltonian. It is found from numerical calculations 
that considering the position dependence of Luttinger parameters is important mostly for 
bound-free transitions. 
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